
GalaxSee Program Description

Compiling and running the code
The source code for GalaxSeeHPC requires a unix-like
environment, such as MacOS X, Linux, or the Cygwin environment
for Windows users. You will also need a C compiler, and a
working copy of “make” (standard on most unix-like systems.)
Additional libraries which are not required to use GalaxSeeHPC,
but can extend the number of features available include the
ability to display X11 graphics (top-down and side view) and to
compile against the X11 development libraries for basic X11
display; GD libraries to create snapshots in jpg format (top-
down and side-view); OpenGL, SDL, and pthreads for interactive
graphics with perspective; and FFTW3 for the ability to use
Particle-Particle-Particle-Mesh force calculation along with
periodic boundary conditions. If you do not have these features
on your system, you can disable them in the Makefile before
compiling the code.

Download and unpack the source code for GalaxSeeHPC
(galaxsee_hpc.tgz). You will notice a number of files ending in
“.c” and “.h.” These are the c code and header files that you
will compile. You will see a sample input file, test.gal.
Additionally, you will see some helper files, such as two “qsub”
files that can be used to submit jobs on a cluster with a PBS
scheduler, and a file “make_pov.perl” along with three POVRay
include files that allow you to use the ray tracing program
POVRay to make high resolution animations from snapshot files
taken throughout a single simulation. Finally, notice the file
“Makefile.” This file contains all of the instructions and
options that your compiler will need to build the code.

Makefile contains a series of options that will define what
compiler is to be used, and defines special options for that
compiler.

#CC = /opt/mpich/intel/bin/mpicc
CC = icc
#CC = mpicc
#CC = gcc
CFLAGS = -Wall
LDFLAGS = -o

LIBS = -lm

You should set CC equal to the compiler you are using on your
system. For most systems, this will be the GNU C Compiler, gcc,
or if you are on a multi-core platform or a cluster and plan to
run the code in parallel, you will want to specify your MPI C
compiler, typically “mpicc.” You can specify typical flags to
pass to the compiler at compile time and link time (CFLAGS and
LDFLAGS), as well as system libraries against which you will
link your code (“LIBS = -lm” specifies that you will compile
against the math library, for example.)

DEBUG OPTIONS
CFLAGS += -g

OPTIMIZATION OPTIONS
#CFLAGS += -O3

Additionally, you may choose to use additional debugging or
optimization options. These will vary by compiler, but “-g” is a
typical flag to tell your compiler that you want to run in
“debug” mode, where additional information about the process of
running the code is kept, in case you want to us a package like
“gdb” (GNU Debugger) or “valgrind” (a memory error detection
tool) to analyze the code. Running in debug mode will make the
code run somewhat slower.

Optimization options vary greatly from one compiler to another
and from one platform to another, but most compilers give you
the option of a “shortcut” for common combinations of
optimizations, where “O1,” “O2,” and “O3” are levels of
increasing optimization, though you may find with some codes on
some systems, too much optimization may result in unexpected
results.

You will typically not use both optimization options and debug
options at the same time, but would use one or the other. Note
that in the example shown here, the optimization options in the
Makefile are commented out by adding a hash symbol “#” at the
front of the line.

LIBGD OPTIONS
#CFLAGS += -DHAS_LIBGD
#LIBS += -ljpeg -lpng -lz -lgd

X11 OPTIONS
CFLAGS += -DHAS_X11

LIBS += -L/usr/X11R6/lib64/
LIBS += -lX11

SDL OPTIONS
#CFLAGS += -DHAS_SDL -D_REENTRANT -D_USE_PTHREADS
#LIBS += -lGL -lGLU –lSDL

GalaxSeeHPC has a number of update options that allow you to
view the results of each timestep in the simulation, some of
which assume that you have additional software available on the
machine. If you plan to write results as a series of jpg images
directly to disk, you would want to ensure that LIBGD is
installed on your system, and you would make sure that the LIBGD
options are uncommented in your Makefile. If your version of
LIBGD is installed in a non-typical location, you may need to
use the ‘-L/path/to/library’ LIBS option, and/or the ‘-
I/path/to/include’ CFLAGS option.

Similarly, if you plan to use the X11 or SDL visualization
options, you will need to make sure that they are installed on
your system, uncomment those CFLAGS and LIBS options before
compiling, and if needed locate the actual library and include
locations on your computer and add those to your Makefile
options as well.

MPI OPTIONS
#CFLAGS += -DHAS_MPI
#LIBS += -lmpi

FFTW OPTIONS
CFLAGS += -DHAS_FFTW3 -DUSE_PPPM
CFLAGS += -I/opt/fftw3/gcc/include
LIBS += -L/opt/fftw3/gcc/lib
LIBS += -lfftw3

Your MPI and FFTW options allow you to use MPI to run the
program in parallel and to use FFTW3 in order to use a Particle-
Particle-Particle-Mesh periodic force calculation, respectively.
If you plan to use these, make sure that they are installed on
your system, and uncomment the appropriate Makefile lines.

OBJS = nbody.o\
 text11.o\
 octtree.o\
 mem.o\
 rand_tools.o\
 quaternion.o\

 sdlwindow.o\
 fcr.o\
 pppm.o\
 cubeinterp.o\
 readline.o\
 galaxsee.o

The OBJS variable in your Makefile is your object code. Notice
that for every “.c” file in your directory, there is a “.o” file
listed here. This is the list of object files that you want the
compiler to create, and then link together. If you extend the
GalaxSee HPC program and create new “.c” files, make sure you
add the corresponding “.o” file here.

Having the Makefile separate building each individual object
from linking objects together allows for more efficiency when
modifying large codes, as if you make a change in a single file,
only that one file needs to be rebuilt.

 ** If you do choose to extend GalaxSee by adding additional
code in new files, make sure to add them as “.o” and not “.c” in
your Makefile, as it is possible to write over your code by
doing this **

PROGRAM = galaxsee

all: $(PROGRAM)

PROGRAM gives the name of the executable to be built. “all”
gives the default object to be built if make is executed with no
arguments.

$(PROGRAM): $(OBJS)
 $(CC) $(OBJS) $(LDFLAGS) $(PROGRAM) $(LIBS)

The $(PROGRAM) line tells make how to build the program, that it
will first build all objects, and then use the compiler
specified to link those objects with the given link flags, with
the executable name provided, linking against the libraries
specified. Note that Make does not need a specific rule on how
to compile C files, but will automatically use your CFLAGS and
CC options that you have provided.

clean:; rm -f $(OBJS) $(PROGRAM)

vidclean:; rm -rf out*.png out*.pov

povfiles:; for f in *.dump; do make_pov.perl $$f >&
/dev/null; done

vidpov:; for f in *.pov; do povray -H600 -W800 -D
$$f >& /dev/null; done

vidpovpbs:; for f in *.pov; do qsub -v FILE=$$f
frames.qsub ; done

anim:; convert -delay 1 -loop 0 -quality 100
out*png anim.gif

Finally, the Makefile ends with a few other common tasks that
you may want to occasionally perform. “clean” removes the
current executable and object code, so that the next build will
rebuild everything from scratch. If you modify any Makefile
options or anything in a header file, you want to build a clean
executable. Vidclean, povfiles, vidpov, vidpovpuma, and anim are
options specific to display. Vidclean removes files generated by
the libgd and povray display options. Povfiles generates povray
scen files from a sequence of “dump”ed snapshot files. Vidpov
uses povray, if installed on your system, to process and render
those scene files. Vidpovpbs can be used on a cluster with a PBS
scheduler to schedule all of your povray scene renderings. Anim
will use the convert program, provided by ImageMagick, to create
an animated gif from a sequence of png files.

After you have made any modifications needed for your Makefile,
run it on your computer using the “make” command. (I recommend
making clean first to ensure a clean build.)

make
make clean

If everything works properly, you will see a sequence of
comments and possibly warnings for your compiler, and eventually
the program will finish compiling. The last line of your
compilation step might look something like

icc nbody.o text11.o octtree.o mem.o rand_tools.o
quaternion.o sdlwindow.o fcr.o pppm.o cubeinterp.o
readline.o galaxsee.o -o galaxsee -lm -L/usr/X11R6/lib64/
-lX11 -L/opt/fftw3/gcc/lib -lfftw3

and when you type “ls” at the command prompt you will see an
executable file “galaxsee” that has been created.

basicView.inc galaxsee.c nbody.c
pppm_structs.h sdlwindow.c
cubeinterp.c galaxsee.o nbody.h
quaternion.c sdlwindow.h
cubeinterp.h galaxsee.qsub nbody.o
quaternion.h sdlwindow.o
cubeinterp.o Makefile octtree.c
quaternion.o test.gal
CVS make_pov.perl octtree.h
rand_tools.c text11.c
fcr.c mem.c octtree.o
rand_tools.h text11.h
fcr.h mem.h octtree_structs.h
rand_tools.o text11.o
fcr.o mem.o pppm.c
readline.c
frames.qsub myShapes.inc pppm.h
readline.h
galaxsee myTextures.inc pppm.o
readline.o

Check to see that the executable will run using the file
“simple.gal”

galaxsee simple.gal

If there are errors, try compiling with fewer options. If that
does not resolve the problem, buy your local guru a Mountain
DewTM and ask for help.

Display options
The UPDATE_METHOD variable controls how you will display each
update, which is executed every X timesteps (X is set by the
variable SKIP_UPDATES). Options include

• 1 Write a hash mark to the command window

• 2 Write current model time to the command window

• 4 Write all position information to the command window

• 8 Create a jpeg using GD libraries on disk

• 16 Display ASCII Art image to the command window

• 32 Display image using X11 to the screen

• 64 Display statistics to the command window

• 128 Display SDL/OpenGL window to the screen

• 256 Write all position information to a file on disk

You may ask yourself, why are the UPDATE_METHOD values ordered
as powers of 2 instead of counting numbers? The UPDATE_METHOD
variable is what is known as a bitmask, which allows you to set
multiple values at the same time by adding them together. A
value of UPDATE_METHOD equal to 34, for example, would be read
as 32 + 2, or both display using X11 and write the current time
to the command window.

If you expect to see a display as a result of setting the
UPDATE_METHOD command and you do not, yet the code is running
otherwise, make sure that you are not requesting a feature which
has not been compiled into the code.

If you choose to extend the code and add your own update
methods, you should follow the example used in nbody.g and
nbody.h, and define each update method flag as a new power of 2,
and use the code in nbody.c as an example of how to add a new
update option.

Sample input file (test.gal)
If you open test.gal, you will see a large variety of input
option. “Reasonable” defaults exist for these for a stellar
cluster, and are presented with the test.gal file included in
the distribution.

Model definitions
N 500 # number of masses
TFINAL 1000.0 # final time in time units
TIMESTEP 0.1 # timestep
INITIAL_V 0.0 # initial random velocity
in velocity units
ROTATION_FACTOR 0.0 # unitless rotation factor
(equilibrium ~ 1.0)
DRAG_COEFFICIENT 0.0 # coefficient of dynamical
friction
SCALE 13.0 # 1/2 the "box" side length
MASS 800.0 a # total system mass

G 0.00449 # Gravitational Constant
EXPANSION 0.0 # expansion constant in
velocity units

Regarding units, the user chooses what units to use for time,
length, and mass scales, and then should use derived units for
velocity based on those, and should provide any constants,
particularly the gravitational constant G and if used the
universal expansion rate in a value appropriate to those units.

INT_METHOD is the integration method
INT_METHOD_RK4 1
INT_METHOD_LEAPFROG 2
INT_METHOD_MPEULER 3
INT_METHOD_IEULER 4
INT_METHOD_EULER 5
INT_METHOD_ABM 6
##
INT_METHOD 1

A variety of choices are available for the integration method,
the default is 4th order Runge Kutta.

FORCE METHOD determines how forces are calculated based
on position
FORCE_METHOD_DIRECT 1
FORCE_METHOD_TREE 2
FORCE_METHOD_PPPM 3
#
*NOTE Some force calculation methods require
compilation
against external numerical libraries, and you
may
not be able to use all force methods if those
libraries
are not present and included in the Makefile at
compilation
##
FORCE_METHOD 1

Multiple force calculation methods are available, including a
direct calculation, a tree-based Barnes-Hut calculation, and a
FFT based Particle-Particle Particle-Mesh calculation. Note that
PPPM methods require that you have FFTW3 installed on your
system and include it in your compilation.

FORCE_METHOD_TREE options

TREE_RANGE COEFFICIENT is a scale factor determining how
far apart
two branches of the octtree must be at a given stage in
order
to allow an approximation to be made. This distance is
taken as
a constant multiple of the octtree node size at any
given stage.
##
TREE_RANGE_COEFFICIENT 1.2

The tree range coefficient is a parameter used in the Barnes-Hut
force calculation.

NGRID
The resolution of the grid used in PPPM force
calculation methods
##
NGRID 32

KSIGMA and KNEAR
coefficients controlling a PPPM solution, they control
the
smoothing of point masses into a density distribution
and the
cutoffs for the Particle-Particle calculation for near
neighbors
For the purposes of mapping point particles to a density
distribution
on a grid the density function per point mass is assumed
to be
normal with a standard deviation given by
KSIGMA * (2 * SCALE) / NGRID
and nearest neighbors are any objects within
KNEAR * (2 * SCALE) / NGRID
To use a PM solution instead of a PPPM solution set
KNEAR to zero.
##
KSIGMA 2.0
KNEAR 1.0

The Particle-Particle Particle-Mesh method has three parameters,
the resolution of the grid, and coefficients to calculate the
expanded particle distribution and the cutoff for nearest
neighbors.

DISTRIBUTION controls the initial distribution of masses

DISTRIBUTION_SPHERICAL_RANDOM 1
DISTRIBUTION_RECTANGULAR_RANDOM 2
DISTRIBUTION_RECTANGULAR_UNIFORM 3
##
DISTRIBUTION 1

ANISOTROPY is in distanced units, and is a random shift
given
to particle positions in distributions that are
initially uniform
ANISOTROPY 0.01

The initial distribution has a variety of options. Uniform
distributions additionally can be given an anisotropy argument
which adds a random shift to all particles.

Softened potentials
two softening options are given, srad factor is a
unitless coefficient
for which a "shield radius" is calculated for each
point mass M
so that close encounters within that shield radius
are neglected
SRAD = SRAD_FACTOR * (G * M * TIMESTEP^2)^(1/3)
the other option is an additive term in the
denominator of force
calculation terms so that instead of a force of G M1
M2 / r^2
one uses F = G M1 M2 / (r + SOFT_FACTOR)^2
##
SRAD_FACTOR 5.0
SOFT_FACTOR 0.0

Two options exist if you need to soften the potential to
eliminate ejections of objects due to numerical instability when
treating close interactions. A shield radius can be used in the
code, and if used will result in all forces being neglected when
objects are closer than that shield radius. In the code, it is
calculated based both on the object causing the acceleration and
the time step, and the user provides a unitless coefficient.
Additionally, a traditional softened potential can also be used.

UPDATE_METHOD is a bitmask allowing you to layer
different display options
UPDATEMETHOD_HASH_TEXT 1 # display a
hash mark every update

UPDATEMETHOD_BRIEF_TEXT 2 # display
model time
UPDATEMETHOD_VERBOSE_POSITIONS 4 # display all
positions at update
UPDATEMETHOD_GD_IMAGE 8 # create image
files using GD
UPDATEMETHOD_TEXT11 16 # display
ascii art animation
UPDATEMETHOD_X11 32 # display X11
image
UPDATEMETHOD_VERBOSE_STATISTICS 64 # display
energy statistics
UPDATEMETHOD_SDL 128 # display
SDL/OpenGL image
UPDATEMETHOD_DUMP 256 # write raw
data to file at update
#
If you wanted to include both an X11 display and brief
text to the terminal
for example, you would use 32 + 2 = 34
UPDATE_METHOD 34
#
*NOTE Some update options require compilation against
other system
libraries, and you may not be able to use all
visualization options
if they were not included in the Makefile and
present on the
system at compilation.
##
UPDATE_METHOD 16

The update method controls how the user will see the results of
the simulation, and is set as a bitmask so that multiple methods
can be used simultaneously.

SHOW_UPDATES is either zero or positive to allow a
display to be shown
SHOW_UPDATES 1

SKIP_UPDATES allows the user to skip the number of
timesteps between
refreshed information about the model
##
SKIP_UPDATES 10

FILE_PREFIX is a string denoting the prefix of all
output files
produced by the code
##
FILE_PREFIX out

Additional options exist to control how the output is processed,
including a single flag that can be used to shut off all output.

galaxsee.c (main routine)
galaxsee.c contains the main routine that will run the program.
It looks for command line input to check to see if there is an
input file, and takes input from STDIN if there is not an input
file listed. It parses the input file, sets reasonable defaults
for the model, and overrides them using the input file when
specified. It calls routines from nbody.c to execute the code in
an iterative loop over the requested model time and timestep,
and completes output when done. You will notice some additional
options in the code if specific features, particularly MPI or
SDL options, that have been blocked out with “#ifdef”
statements. This allows you to define variables in the Makefile
to include certain portions of the code at compile time.

The compute loop is broken out into its own routine so that, if
an update method that requires a threaded event handling loop
(such as the SDL display option) is needed, that provided that
the user has pthreads on their machine, the infrastructure is in
place for the code to be modified to add a different update
method with threaded event handling.

nbody.c and nbody.h
nbody.h defines the basic memory structure of the galaxsee
model. It includes many variables that are obviously what you
would expect (arrays for x,y,z, vx,vy,vz, and mass, for
example,) and some that are not so obvious (a integer counter
abmCounter to determine how many past iterations have been
performed when restarting the Adams-Bashfourth-Moutlon
integration method, for example.) Comments have been included in
nbody.h describing each of these variables.

nbody.c contains the library routines needed to drive the
simulation. Most of the methods in the library can be
categorized as “set” routines used to set default values, “step”
routines used to define how to integrate the model one step

forward, or “calc” routines used to calculate the interparticle
forces. Additional routines exist to allocate and free memory,
to handle update methods, or to initialize the problem.

octtree.c and octtree.h
The octtree.c routines and memory structures are used to perform
a Barnes-Hut force calculation. Routines focus primarily on
building the tree (populateOctTree), updating a built tree while
keeping the structure the same (resetOctTree), and calculating
forces from the tree (calculateForceOctTree).

pppm files
The pppm.c routines and memory structure are used to perform a
Particle-Particle-Particle-Mesh force calculation, and primarily
include routines to create a density distribution based on a
particle distribution (populateDensityPPPM), to calculate the
potential from that density using a Fourier transform and
interpolate forces onto a grid (prepPotentialPPPM), and to
calculate forces (calculateForcePPPM). cubeinterp.c is a helper
file to handle the interpolation.

Miscellaneous Tools
mem.c is a set of memory allocation routines to simplify
allocation of arrays and matrices. rand_tools.c are a collection
of random number creation routines. frc.c is a fast cube root
approximation which can be used to speed up the calculation of
the shield radius, as speed is more important than precision in
the calculation of the shield radius. readline.c are a
collection of routines for reading and parsing the input file,
allowing for automatic removal of whitespace, blank lines, and
comments. sdlwindow.c handles the event and drawing loop for the
SDL update option. quaternion.c is a quaterion rotation memory
construct used in the SDL update option. text11.c is a ascii art
memory construct used in the ascii art update option.

